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Abstract 

 

Mathematical reasoning in the K-12 classroom includes the teacher helping students share, 

explain, test, and revise mathematical ideas. While mathematical reasoning has long been 

established as a key component for effectively teaching and learning mathematics, understanding 

what teachers can do and what they should know to promote their students’ mathematical 

reasoning remains underdeveloped.  This article unpacks an example of engaging prospective K-

8 teachers with mathematical reasoning in an undergraduate mathematics course to help them 

learn about mathematical reasoning and to illustrate how they might teach it to K-8 students.  

How the prospective teachers responded to the experience is discussed, as well as their 

perceptions of K-8 students’ mathematical reasoning capabilities. Implications for teaching about 

mathematical reasoning as part of teacher development are also proposed. 

 

 

 

Mathematical reasoning develops in classrooms where students are encouraged to put 

forth their own ideas for examination. Teachers and students should be open to questions, 

reactions, and elaborations from others in the classroom. Students need to explain and 

justify their thinking and learn how to detect fallacies and critique others’ thinking. 

(National Council of Teachers of Mathematics [NCTM], 2000, p. 188) 

 

Mathematics presented in the Euclidean way appears as a systematic, deductive science; 

but mathematics in the making appears as an experimental, inductive science (Polya, 

1957, p. vii). 

 

 Sharing, explaining, testing, and revising mathematical ideas is fundamental to doing and 

creating mathematics (Lakatos, 1989). Before a mathematical formula, algorithm, or theorem 

and proof appears in a mathematics textbook, research journal, or conference presentation, it has 

been fiddled with, tweaked, illustrated with (counter) examples, perhaps set aside and then 

revisited, and shared with others in the discipline (Polya, 1957). This process of doing 

mathematics is consistent with findings from educational psychology that learning occurs within 

a context of social interaction and communication and shapes what we know (Vygotsky, 1978). 

In other words, the mathematics that we learn is intertwined with how we learn it; memorizing 

definitions, rules, and procedures results in learning thin mathematics that is different than 

deeper mathematics learned through problem solving and mathematical reasoning within a 

community of learners (Schoenfeld, 1985). 
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 Mathematical reasoning, a process where mathematical ideas are shared, explained, 

tested, and revised in a disciplinary and/or learning community, has been recognized as a key 

component of effective K-12 mathematics teaching and learning for over fifty years (cf. Conklin, 

Grant, Ludema, Rickard, & Rivette, 2006; Fitzgerald, Winter, Lappan, & Phillips, 1986; 

Lamberg, 2013; NCTM, 2000; Polya, 1957).  In identifying mathematical reasoning as central to 

teaching and learning mathematics, reforms reflect what Bruner (1960) described as intellectual 

honesty – students should have opportunities to learn about the discipline as it is actually done.  

For example, NCTM (1991) stresses the need for both the teacher and students to play active 

roles in learning mathematics, and that learning how to reason with mathematics is critical.  

While recent research has noted various interpretations of mathematical discourse and reasoning 

in the classroom (e.g., Herbal-Eisenmann & Otten, 2011; Ryve, 2011; Truxaw & DeFranco, 

2008), the predominant picture that emerges is that mathematical reasoning should be integral to 

the mathematics classroom and necessarily includes students talking about mathematics with the 

informed support of their teacher (Lamberg, 2013; Rickard, 1995, 1996, 1998). 

 But while K-12 students developing skills in mathematical reasoning is clearly important, 

how teachers contribute to making this happen is less clear.  For example, teachers need strong 

subject matter knowledge to help their students unpack a mathematical idea in multiple ways 

(e.g., Wilson, Shulman, & Richert, 1987),1 but the unpredictability of students’ ideas also 

requires teachers to be flexible to help students revise flawed mathematics (e.g., Rickard, 2014).  

The uneven terrain of students’ mathematical reasoning requires teachers to navigate with 

students to test and refine their ideas and get back on track, and how teachers accomplish this 

with their students is varied and uncertain (e.g., Rickard, 2005a, 2005b). Research going back 

over twenty years has examined how teachers facilitate mathematical reasoning with their 

students and dilemmas or challenges they may encounter (cf. Ball, 1990; Conklin et al., 2006; 

Rickard, 2014).  However, what teachers need to know and be able to do in their classrooms with 

their students to provide effective learning experiences in mathematical reasoning is less 

developed (Lamberg, 2013). 

 

 

Mathematical Reasoning in Mathematics and in Teaching 

 

Proofs and Refutations 

 

 Lakatos (1989) describes mathematical reasoning, as it occurs in the discipline of 

mathematics, as “proofs and refutations.” In this process, a new idea is proposed and shared 

within the mathematics community, then explained more carefully through an informal argument 

or proof, then tested by the community using examples and/or counter examples, and finally 

revised or formally proved (Lakatos, 1989).  Revisions may consist of modifying the original 

idea based on how it withstands the examples and/or counter examples. Whether the venue is a 

graduate mathematics seminar, a presentation at a research conference, or an undergraduate or 

K-12 classroom, Lakatos argues that the proofs and refutations process is a reasonable 

framework for how mathematical reasoning progresses to understand and create mathematics.  

                                                        
1 Wilson et al. (1987) called this pedagogical content knowledge, which is a kind of subject 

matter knowledge specific to teaching, and includes knowledge of representations, examples, and 

explanations that are tailored to helping students learn particular concepts and/or procedures. 
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Interestingly, Lakatos’s proofs and refutations framework is similar to the heuristic Polya (1957) 

developed for problem solving:  understand the problem, devise a plan, carry out the plan, look 

back/revise. A key aspect, in which the frameworks differ, however, is that Polya’s heuristic is 

about finding a solution to a stated problem, whereas Lakatos’s proofs and refutations is a 

framework for creating and proving mathematical ideas (cf. Lakatos, 1989; Polya, 1957). 

 

An Example of Mathematical Reasoning with Proofs and Refutations 

 

 As a university faculty member and mathematics educator, I use the proofs and 

refutations framework to structure experiences for my undergraduate students that will engage 

them with and help them learn about mathematical reasoning.2  My further intent is that these 

experiences will inform their future teaching with their own K-8 students.  For one such example 

of learning about mathematical reasoning, I proposed the following idea to my class, which is 

modified from an item that Ball (1988) used to explore the mathematics subject matter 

knowledge that prospective teachers bring to teaching: 

 

One of your students is very excited and says that she has come up with a new 

mathematical theory. She says that as the perimeter of a figure increases, then its area 

also increases. She shows you these diagrams that she says prove her theory and she 

wants to share it with the class: 

 

 

      W = 2  L = 4  

      P = 12; A = 8  W = 4  L = 8  

                                                P = 24; A = 32  

“Look,” she says, “at how the area increases when the perimeter gets bigger!”  

What do you think of the student’s theory and how would you respond to her? 

 

After presenting this item, I asked my students to think about the mathematics of the student’s 

theory and their response to her, and then we shared our thinking.3  

  

                                                        
2 I teach a two-semester course sequence in mathematics (Mathematics for Elementary Teachers 

I and II) that is required for undergraduate students in the Bachelor of Arts in Education major, 
so all students in my mathematics courses are prospective teachers. 
 
3 Using the item, Ball (1988) found that prospective teachers’ subject matter knowledge was thin 

and that many agreed with the student’s theory.  In my undergraduate course, I focus on using 

the item to unpack mathematical reasoning as suggested by the Lakatos (1989) proofs and 

refutations framework and getting my students to engage with mathematical reasoning and think 

about how they might teach it.   
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Presentation of the above item is the first stage of the proofs and refutations process.4  

After allowing my students a few minutes to think about the student’s proposed theory, we 

moved on to a careful explanation, illustrated by additional examples. First, I asked for a 

volunteer to explain how the example shown in the item demonstrated the student’s theory.  

After raising her hand, one of my students explained that, “Her example shows that both the 

perimeter and area got bigger, so as the perimeter increased, so did the area.”  Seeing nods of 

agreement from the class, I next asked, “OK -- how many people agree with the student’s 

theory?”  About one-third of my class of 27 raised their hands and, after two more follow-up 

questions regarding who disagreed and who wasn’t sure, about half the class disagreed with the 

student’s theory and the remainder indicated that they were not sure.   

 Moving on to the next step of the proofs and refutations framework, I asked those who 

agreed with the student’s conjecture to illustrate the theory with some additional explanation as 

to why they believed it is correct or even describe a proof. One supporter of the theory shared 

that, “It makes sense because for the perimeter of the rectangle to get bigger, the length and 

width have to increase, and since the area is the multiplied length and width it has to get larger 

too.”  Other supporters of the student’s theory nodded in agreement, one adding that the theory 

works for other figures too, such as circles. He noted that, as with rectangles, “If the radius or 

diameter of a circle gets bigger then the circumference – or perimeter – of the circle gets bigger 

and so does the area.”  At this point, I asked the class, whether they individually agree with the 

student’s theory or not, or weren’t sure, if they understood what it was saying. Everyone in the 

class nodded and I emphasized that when working with K-8 students in their own classrooms, 

it’s important to make sure that the mathematical idea be understood so that it can be explored 

and tested further. 

    At the third stage of the proofs and refutations process, members of the mathematics 

community unpack a mathematical idea further by testing it with additional examples or asking 

further questions. So now I noted to the class that, so far, we’ve had some examples that 

illustrate the theory and seem to support it.  What about examples from those who don’t think the 

student’s theory is valid – i.e., counter examples?  One of the students, who had raised her hand 

indicating that she did not think the student’s theory was correct, raised her hand again and said, 

“I have a counter example” and I asked her to share it on the whiteboard. She shared the 

following: 

 

           

  

 

           W = 2  L = 4     W = 1  L = 7 

           P = 12; A = 8     P = 16; A = 7 

After sketching the above rectangles, I asked if everyone agreed with the calculations for the 

perimeter and area of each rectangle and all nodded.  I then asked the student why she had called 

this a counter example.  She explained, “Well, the perimeter of the rectangles increased – from 

12 to 16 – but the area didn’t increase, it went down – from 8 down to 7 square units.” She added 

                                                        
4 I did not discuss the Lakatos (1989) proofs and refutations framework explicitly with my class, 

but instead use it as a framework for my own planning and structuring the class discussion.  
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further that, “So this doesn’t follow the theory because the student said in her theory that as the 

perimeter increases the area increases, but here the area didn’t increase it went down.” Looking 

around the room, some students were nodding in agreement while others appeared puzzled. 

 Thanking the student for sharing her counter example, I asked if there were any questions 

about why the counter example did not conform to the theory.  Seeing no indication of questions, 

I then asked for any comments from students who had initially felt that the theory was valid.  

The same student who had supported the theory and proposed the example of circles having 

increased area when the perimeter (or circumference) increased, said that, “I see it doesn’t work 

all the time for rectangles, but I still think that it has to work for circles.” Noting that several 

students where nodding in agreement, I asked the class how many thought that the theory worked 

for circles even if it didn’t work for rectangles and almost everyone raised their hands. At this 

point in the lesson, I felt that we were ready to move into the fourth stage of the proofs and 

refutations framework, which is to revise the theory in the mathematics community.  I said to the 

class,  

 

OK.  So we started with a mathematical idea that many of us thought was valid, but 

working together we see that it doesn’t always work for some shapes – like rectangles – 

but it may work for others, like circles.  What mathematicians often do in a situation like 

this is try to revise the theory to try to come up with something that is true.5 

  

I then asked everyone to take a few minutes and think about how the theory could be revised so 

that it was true.  I added that, “One way to help us to come up with a revised theory is to find 

more examples where it works and doesn’t work and then try to compare them and maybe find 

some patterns.” 

 After a few minutes, the student who had earlier argued that the original theory worked 

for circles raised his hand again and said, “I still think it works for circles, so can we just say, ‘as 

the perimeter of a circle increases, its area will also increase’?” I paused to write the circle 

conjecture on the whiteboard and then asked the class, “What do we think – does this make 

sense?” Another student, who had not spoken to the class before, raised her hand and said, “I 

know that it didn’t work for rectangles, but I think it does work for squares, even though they’re 

rectangles.” As I wrote “squares” on the whiteboard, another student raised his hand and 

contributed that the theory also worked for equilateral triangles, “Which are to triangles like 

squares are to rectangles,” he said. When I asked him to explain this idea further, he said that the 

theory “wouldn’t work for any triangle, just like it didn’t work for any rectangle,” but would 

work for equilateral triangles because, like the square, “all the sides are equal.” As I wrote 

“equilateral triangles” on the whiteboard, I said to the class, “OK – so far we seem to think that 

the theory works for circles, squares, and equilateral triangles, does anyone disagree with that?”  

No hands were raised, so we had class consensus that the while the theory was not valid for all 

figures as originally proposed, it is valid for circles, squares, and equilateral triangles. 

 Continuing with trying to revise the theory as a mathematical community, I stated to the 

class that we should probably think about two things now: Are there other figures for which the 

theory is valid besides circles, squares, and equilateral triangles and, if so, do that have 

something in common; and, secondly, how might we revise the original theory to account for the 

                                                        
5 Lakatos (1989) referred to revising a conjecture or theory to accommodate counter examples as 

“monster barring” and noted its wide use in mathematics. 
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figures and/or their commonalities? One student, making her first contribution to the class, said 

that she felt that, “There are lots of figures that the theory will work, they just have to have all 

sides equal – like a pentagon or hexagon, or whatever, will work so long as all the sides are 

equal.” In rapid succession, another student commented that the theory works for “regular 

polygons, which is what the squares and equilateral triangles are” but then another student said, 

“But circles aren’t polygons and the theory works for them too,” followed by a third student who 

commented, “It’s proportional – as long as the figures are proportional the theory will work.”  

Interjecting myself into the discussion, I said, “Let’s try to tie some of these things together – the 

class has identified other shapes, and maybe commonalities, for which the theory might be valid, 

so now we have to try to use this information to revise the theory.” I then recorded “all sides 

equal,” “regular polygons,” and “proportionality” on the whiteboard with the other terms. I then 

asked the group to spend a few minutes thinking about how these findings might be used to 

revise the student’s original theory into something we felt would be mathematically valid. 

 As I circulated around the room, I noticed that most students had sketches of various 

figures in their notes.  All were engaged in writing more notes, speaking quietly with a peer, or 

both. As they worked, I commented to the group that, “Remember, what you’re doing now, this 

is what we want our K-8 students to do also – talk about mathematics, compare ideas – ‘no one 

of us is smarter than all of us’.”6 After another few minutes of work time, I asked the class for 

their attention and to please share any ideas that they had. The first student to raise his hand 

suggested, “Let’s revise the theory so that it says, ‘If the perimeter of a figure increases 

proportionally, then the area also increases’.” I asked him to explain his reasoning further.  He 

described how “proportionality is important because it means you can’t increase one dimension 

and shrink another like in the counter example – you need to increase all the dimensions.”  

Another student, making her first contribution to the discussion, noted that proportionality didn’t 

need to be included in the revised theory – “as long as all the dimensions of a figure increase, the 

perimeter and area will both have to increase too,” she said.  Finally, another student noted that 

this idea explains why the theory works for squares and equilateral triangles, “Because for those 

all the dimensions have to increase for all the sides to stay the same.”  With nods of agreement 

all around the classroom, I asked what our final conjecture should be and the class settled on, If 

the perimeter of a figure increases by increasing all its dimensions, then the area of the figure 

increases.7 

 

Reflection and Discussion 

 

 With  the revised  conjecture agreed upon, I shared  with the class that  what we had done  

                                                        
6 “No one of us is smarter than all of us” was shared with me by Annie Blue of Togiak, Alaska.  

Annie Blue is a Yup’ik elder widely recognized throughout Alaska as a master storyteller and 

expert on Alaska Native culture (Kisker, Lipka, Adams, Rickard, Andrew-Irke, Yanez, & 

Millard, 2012; Lipka, Jones, Gilsdorf, Remick, & Rickard, 2010). 

 
7 The conjecture could be refined further – e.g., the process of proofs and refutations could be 

repeated.  However, with class time running short and my students satisfied with having revised 

and improved the conjecture, I decided to move on. 
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together  in  sharing,  explaining,   testing,   and  revising  the  original  theory  “parallels”8   how  

mathematics is actually done.  By engaging our own K-8 students in mathematical reasoning, as 

in this example, K-8 students can not only learn mathematics but learn about doing mathematics.  

Bolstering the importance of substantive mathematical discussions in the K-8 classroom, I 

reminded my students that mathematical reasoning and proof is one of the five NCTM process 

standards (see NCTM, 2000). With the roughly 15 minutes we had left in the class, I asked my 

students what their overall thoughts were about our mathematical discussion.  In general, the 

class seemed to think that the discussion was worthwhile and had a better sense of what goes on 

in creating mathematics.  One student reflected that during the prior semester we had studied the 

Babylonian and Mayan numeration systems, and that the experience of unpacking and revising 

the student’s theory gave her a sharper sense of how things like numeration systems may have 

developed through discussion and debate among people. Several students commented that having 

students develop, share, and explain their own examples (or counter examples) was really 

important and good for K-8 students in developing deeper understanding of mathematics, with 

one observing that sharing ideas is also a vehicle for student assessment.   

 Another interesting factor emerged from the discussion.  Several students articulated, and 

some of the rest of the class agreed, that K-8 students might not be capable of the kind of 

mathematical reasoning and discussion that we had just had.  As one skeptical student queried, 

“Can fourth or fifth graders really talk about stuff like this and come up with ideas like that?”  

The few moments we had remaining in the class were not sufficient to answer this question 

completely, but I firmly assured the class that, “Yes, K-8 students can have discussions like we 

have just had with your help.”  I reminded my students about the centrality of the teacher’s role 

in structuring the mathematical reasoning and guiding the classroom discussion.  Importantly, the 

conjecture or example serving as the catalyst for the discussion should be carefully chosen.  

Sometimes, rich mathematical starting points can emerge unexpectedly and are not anticipated 

(e.g., Rickard, 2014), but are often intentionally crafted by the teacher (e.g., Schoenfeld, 1985).  

Moreover, whether planned or spontaneous, I promised my students that, working with their own 

K-8 students, they would be pressed in balancing dilemmas of time, what mathematics is most 

worth reasoning about, and respecting K-8 students as members of a mathematics community of 

learners (Ball, 1990). Wrapping up our class for the day, I reminded my students that we had 

engaged in mathematical reasoning many times since the beginning of the academic year and had 

had many discussions about doing mathematics. But these previous experiences had usually 

focused on a specific problem and the goal was developing a problem solving approach to 

finding a solution to the problem.9  In the case of the student’s theory about perimeter and area of 

figures, we used a conjecture as a starting point and focused on understanding, testing, and 

revising it into a new, better, and valid conjecture, not necessarily a solution. 

 

 

 

 

                                                        
8 This pun was intended and, as hoped for, it evoked groans from some of my students. 

 
9 An example would be the “handshake problem,” which we worked on during the first day of 

the two course sequence:  “If everyone in the room shakes hands with everyone else, how many 

handshakes are there?  How many handshakes are there if there are n people in the room?” 
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Conclusion:  Limitations and Implications of Teaching Mathematical Reasoning 

 

 This example of mathematical reasoning that I have shared is my account of my own 

experience with my own students. While I believe I have provided an accurate summary of the 

events and comments from my undergraduate class, I make no claims of objectivity or that our 

experience can be generalized to other professors or prospective teachers.  Like other researchers 

who have studied their own practices, my goal is to unpack and gain insight into issues of 

practice, not to develop findings that can be generalized to others (e.g., Ball, 1990). Moreover, a 

variety of case studies have advanced understanding of teachers’ and students’ roles and 

contributions to teaching and learning problem solving and mathematical reasoning (e.g., 

Conklin et al., 2006; Lamberg, 2013; NCTM, 2000; Rickard, 2005a, 2005b, 2014). Similarly, the 

example of teaching my own students about mathematical reasoning using Lakatos’s (1989) 

proofs and refutations process has potential to shed light on teaching prospective teachers about 

mathematical reasoning. The value of the example is not in providing prescriptions for professors 

or prospective teachers, but instead a rough sketch or outline of what teaching and learning 

mathematical reasoning might look like – which must then be filled in with details specific to the 

needs and strengths of particular teacher and learners. 

 I believe the example from my class demonstrates that prospective K-8 teachers can 

readily engage in mathematical reasoning. Specifically, I was able to coach my class through the 

steps of Lakatos’s (1989) proofs and refutations framework as they wrestled with a conjecture 

relating the perimeter and area of figures. The conjecture was selected because I believed it 

would be challenging to my students, yet also incorporates accessible mathematics that are topics 

in the K-8 mathematics curriculum (see Ball, 1988). Using Lakatos’s (1989) process of proofs 

and refutations as a framework for our mathematical reasoning experience was useful as it has 

the potential to serve as a framework for my students in their own teaching. In our class 

reflection and discussion, we explicitly noted that we had gone through a process of sharing, 

explaining, testing, and revising a student’s conjecture – this is shorthand for the proofs and 

refutations process and can be used as a heuristic by my K-8 students in their own planning and 

thinking about teaching mathematical reasoning. 

 While the example shows that our class experience with mathematical reasoning was 

beneficial, it is unlikely by itself to be sufficient in preparing prospective K-8 teachers to teach 

mathematical reasoning. In fact, like other aspects of teaching and learning mathematics, 

effectively teaching mathematical reasoning likely requires ongoing professional development at 

both preservice and inservice stages of teacher development (Lamberg, 2013; NCTM, 1991).  

Integrating multiple opportunities to learn about and experience teaching mathematical reasoning 

in K-8 teacher preparation programs – e.g., case studies, planning and teaching sample lessons to 

peer or K-8 students in field experiences – is desirable (Ball, 1990; Conklin et al., 2006; Ryve, 

2011; Truxaw & DeFranco, 2008). At my institution, for example, the class experience shared 

here is supplemented by a case study about mathematical reasoning and discourse (see Rickard, 

2014) and multiple lesson planning experiences in a mathematics methods course. The internship 

year also involves teaching experiences that include mathematical reasoning as one criteria on 

which prospective teachers are assessed and coached by mentor teachers. Ongoing inservice 

development of subject matter knowledge and pedagogical content knowledge of mathematics 

further supports teaching mathematical reasoning, as K-8 teachers need deep and flexible 

understanding of mathematics and ways of teaching it to be confident and effective in engaging 
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their own students with mathematical reasoning (Rickard, 1996, 1998; Vacc & Bright, 1999; 

Wilson et al., 1987). 

 Finally, as an addendum to our experience with mathematical reasoning, one of my 

students asked at the beginning of the next class if we were finished with the theory that we had 

revised, or if we had more work to do. Recall that we had revised the theory/conjecture to be:  If 

the perimeter of a figure increases by increasing all its dimensions, then the area of the figure 

increases. I asked the class what they thought and opinion was divided – some students thought 

the revised conjecture was fine and others thought we could probably refine it further. My 

(admittedly impromptu) response was that this is another facet of mathematical reasoning and 

how mathematics works – sometimes a problem or conjecture is set aside, other times some 

mathematicians continue to work on it.  As a class, I said, we needed to continue on with new 

material, but anyone with an idea for a refinement of the conjecture could share it with the class 

for consideration.  This response generated many nods of consent and we continued with the next 

topic.10 I thought to myself about how Lakatos (1989) viewed the way mathematics is developed, 

stating that “Naïve conjectures and naïve concepts are superseded by improved conjectures 

(theorems) and concepts (proof-generated or theoretical concepts) growing out of the method of 

proofs and refutations” (p. 91).  Mathematical reasoning is a process, not necessarily a finished 

product, and the same can be said for learning about teaching mathematics in general and 

teaching mathematical reasoning in particular. 
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